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ABSTRACT
We present a native XML database management system,
Sedna, which is implemented from scratch as a full-featured
database management system for storing large amounts
of XML data. We believe that the key contribution of
this system is an improved schema-based clustering storage
strategy efficient for both XML querying and updating,
and powered by a novel memory management technique.
We position our approach with respect to state-of-the-art
methods.

Categories and Subject Descriptors
E.2 [Data]: Data Storage Representations—Composite
structures; D.2.11 [Software]: Software Architectures—
Domain-specific architectures

General Terms
Design, Performance
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XML database, XQuery, native XML storage, numbering
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1. INTRODUCTION
Flexibility of XML for representing heterogeneous data

and its growing popularity make XML a basic data storage
representation for universal data management systems.
Early works on XML data storages were around non-native
strategies that are based on mapping an XML data model
onto relational or object-oriented models [24]. We believe
that existing relational and object-oriented storages cannot
be adequately customized to support XML flexibility to
full extent. We have implemented a native XML database
system, Sedna, from scratch to benefit from maximum
freedom in developing proper design principles for managing
XML data. The key contributions of this system are:

1. Schema-based clustering storage strategy efficient for
both XML querying and updating;

2. A novel memory management technique.

This paper illustrates Sedna with the focus on storage
manager features.

The paper is organized as follows. Section 2 discusses
related storage strategies for XML and positions Sedna with
respect to different storage aspects. Section 3 presents
an overview of Sedna design and architecture. Section 4
describes the principle mechanisms underlying the Sedna
storage system. In Section 5, notable aspects of XQuery
execution over the storage system are considered. Sedna
transaction aspects are discussed in Section 6. We conclude
in Section 7.

2. RELATED WORK
Trends in native XML storage strategies can be classified

into 3 aspects: (i) data organization, (ii) representation for
inclusion relationship for XML elements, and (iii) memory
management. Discussion on related work is consequently
organized with respect to the following three aspects.

Data organization There are two main approaches to
data organization. The first one is based on an
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assumption that an XML element is frequently queried
together with its sub-elements, so these should be
clustered together [7, 15]. This approach corresponds
to dividing a tree of an XML document into subtrees,
and is usually referred to as a subtree-based storage
strategy.

Another alternative is to cluster together elements
of the same name that are at the same level of
hierarchy in an XML tree [8]. Such clustering
corresponds to organizing nodes according to a schema
and is thus usually referred to as schema-driven
storage strategy. These two approaches have mutually
opposite advantages and disadvantages: subtree-based
storage is efficient for retrieving an element containing
subelements of different types, while schema-driven
storage is efficient for retrieving only subelements
of particular types instead of the whole element.
Additionally, schema-driven storage is generally more
computationally efficient for selecting nodes with
respect to a predicate, because unnecessary nodes are
not fetched from disk when the predicate is evaluated.

A combination of the two approaches is presented
in [20]: XML nodes that constitute relatively
integrated semantic unit are grouped into a semantic
block. Nodes within a semantic block are clustered
according to the subtree-based storage strategy, while
semantic blocks are clustered according to a schema-
driven storage approach.

In Sedna, we use the schema-driven storage strategy.

Element inclusion relationship As concerns inclusion re-
lationship representation, one approach is to determine
parent-child and ancestor-descendant containment re-
lationships by evaluating special join operations (e.g.
structural or containment joins) over labels assigned to
nodes according to a numbering schema. The main ad-
vantage of the approach is that it can be implemented
over a relational database that allows reusing many
standard components of a database system. Another
approach that is more promising with respect to query
execution speed is to connect nodes via pointers. The
latter has two options: (1) location-independent point-
ers, often referred to as OIDs (Object IDentity) [20, 7],
or (2) direct pointers. Location-independent pointers
remain valid even if a pointed XML node physically
moves within a database (e.g. as an effect of execut-
ing updates over an XML document). On the other
hand, direct pointers allow traversing an XML tree
faster when executing XML queries. In Sedna, we com-
bine location-independent and direct pointers to speed
up query execution without significantly increasing up-
date execution time.

Memory management An important aspect of support-
ing both location-independent and direct pointers is a
cost of pointer dereferencing which depends on the na-
ture of a pointer and its correlation with a conventional
virtual memory address. A database pointer cannot
be just an address in the conventional virtual address
space (further called VAS for short). A database pointer
thus has to be an address in a larger Database Address
Space (further referred to as DAS) which in turn has
to be mapped onto the conventional VAS. The cost of

pointer dereferencing depends on the cost of the map-
ping. Reducing the cost of pointer dereferencing is
undeservedly passed over in related work when XML
storage strategies are considered, though it is of much
importance for the overall system performance. There
is a number of techniques proposed to eliminate the
limitation of the VAS [25, 16]. These techniques use
various schemes of pointer swizzling (also referred to
as pointer relocation [16]) that implement conversion
of DAS addresses to VAS addresses. The disadvantage
of all of the techniques is that the pointer represen-
tations in DAS and VAS are different that makes the
conversion expensive. We propose a novel technique in
which both pointer representations are the same that
eliminates the need for pointer swizzling.

3. SEDNA DESIGN AND ARCHITECTURE
Sedna is designed with having two main goals in mind.

First, Sedna is intended from the very beginning as a full-
featured database system. This goal requires support for
all traditional database services such as external memory
management, query and update facilities, concurrency
control, query optimization, etc. Second, Sedna has to
provide a run-time environment for XML data-intensive
applications. This involves tight integration of a database
management functionality and that of a programming
language.

Our starting decision for Sedna design was not to adopt
any existing database system, since the latter would have
inevitably resulted in unfavorable compromises. Instead of
building an additional abstraction layer upon any existing
database system, we developed Sedna as a native system
from scratch. Such an approach took more time and effort
but gave us more freedom in making design decisions and
allowed avoiding undesirable run-time overheads resulting
from interfacing with a data model of the underlying
database system.

We took the XQuery 1.0 language [3] and its data
model [6] as a basis for our implementation. In order to
support updates, we developed our extension to XQuery
with an update language named XUpdate. Our update
language is syntactically close to [17].

Figure 1 depicts the Sedna architecture. Sedna has the
following components. The governor component serves
as the “control center” of the system: it keeps track
of all databases and transactions running in the system
and manages them. All other components in Sedna keep
registered at the governor throughout all their running cycle.

For each Sedna client, the governor creates an
instance of the connection component and establishes
the direct connection between it and the client. The
connection component encapsulates the client session.
For each database transaction initiated by a client, the
connection component creates an instance of the transaction
component. The transaction component encapsulates
components involved in query execution: parser, optimizer,
and executor. The parser is in charge of translating a query
into its logical representation—a tree of operations inspired
by the XQuery core [5]. The optimizer takes the query
logical representation and produces the optimized query
execution plan which is a tree of low-level operations over
physical data structures. The execution plan is interpreted
by the executor component.
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Figure 1: Sedna architecture

On the physical level, each database is encapsulated by an
instance of the database manager that consists of the buffer
manager that is responsible for the interaction between
disk and main memory, and the transaction manager that
provides concurrency control facilities.

4. STORAGE SYSTEM
This section discusses the two primary aspects of the

storage system in Sedna: data organization and memory
management.

4.1 Data Organization
Data organization in Sedna is designed with the goal of

being efficient for both queries and updates.
In order to speed up query processing, the following design

decisions have been made in Sedna data organization.

1. Direct pointers are used to represent XML node
relationships such as parent, child, and sibling
ones. Unlike relational-based approaches that
require performing joins for traversing an XML
document, traversing in Sedna is performed by
simply following a direct pointer. Additional lower-
level techniques are implemented to facilitate quicker
pointer dereferencing, as discussed in Section 4.2.

2. We have developed a descriptive schema-driven storage
strategy which consists of clustering nodes of an
XML document according to their positions in the
descriptive schema of the document. In contrast to
prescriptive schema that is known in advance and is
usually specified in DTD or XML Schema, descriptive
schema is generated from data dynamically (and
is maintained incrementally) and represents concise
and accurate structure summary for data. Using
descriptive schema instead of prescriptive one gives the
following advantages: (1) descriptive schema is more
accurate than prescriptive one; (2) the storage strategy
based on XML descriptive schema is applicable to any
XML document, even the one that comes with no
prescriptive schema.

Technically, descriptive schema employed in Sedna is a
relaxed variation of DataGuides [9]: namely, every path in
an XML document has exactly one path in the descriptive
schema. It follows from the above definition that descriptive
schema for an XML document is essentially a tree [8].

<library>

<book>

<title>Foundations of Databases</title>

<author>Abiteboul</author>

<author>Hull</author>

<author>Vianu</author>

</book>

<book>

<title>An Introduction to Database Systems</title>

<author>Date</author>

<issue>

<publisher>Addison-Wesley</publisher>

<year>2004</year>

</issue>

</book>

...

<paper>

<title>A Relational Model for Large Shared Data Banks</title>

<author>Codd</author>

</paper>

</library>

Figure 2: A sample XML document (top) and its
internal representation in Sedna (bottom)

Descriptive schema serves as an entry point to the
structural part of the XML document. Namely, every
schema node has a pointer to data blocks that store XML
nodes corresponding to the given schema node. As XQuery
queries and XML update statements [14] access nodes in
an XML document with XPath expressions, the descriptive
schema plays a role of a naturally built index for evaluating
XPath expressions.

The overall principles of the data organization are
illustrated in Figure 2. The descriptive schema represented
as a tree of schema nodes is the central component in
the data organization. Each schema node is labeled with
an XML node kind [6] (e.g. element, attribute, text, etc.)
and has a pointer to data blocks that store XML nodes
corresponding to the given schema node. Some schema
nodes depending on their node kinds are also labeled with
names. Data blocks related to a common schema node are
linked via pointers into a bidirectional list. Node descriptors
in a list of blocks are partly ordered according to document
order [3]. It means that every node descriptor in the i-th
block precedes every node descriptor in the j-th block in
document order, if and only if i < j (i.e. the i-th block
precedes the j-th block in the list).

Within a block, nodes are unordered1 for reducing the
overhead of maintaining document order in case of updates.
All inter-node pointers are made direct, except for parent
pointers implemented via indirection table to guarantee the
fixed number of pointer modifications involved into any node
updating.

In our storage we separate the structural part of an XML
node (i.e. markup) and text value. The text value represents

1The order within a block can be reconstructed using
pointers as described below.
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Figure 3: Common structure of node descriptor

string properties of XML nodes, in particular, the content
of a text node [6] or the string-value of an attribute node.
By nature of XML, text values essentially have unrestricted
length, varied for different nodes in the XML document. Due
to unrestricted length support required for text values, they
are stored in blocks according to the well-known slotted-
page structure method [23] developed specifically for data
of variable length. The structural part of a node reflects
its relationship to other nodes (i.e. parent, children, sibling
nodes) and is presented in the form of node descriptor.

The structure of a node descriptor typical to all node
kinds is shown in Figure 3. A node descriptor contains the
following components:

• The label field holds a label of numbering scheme that
is used for tracing ancestor-descendant relationships
of XML nodes; details on the numbering scheme
employed in Sedna are discussed in Section 4.1.1.

• The node handle field provides the identifier that
holds the immutability property during the whole life-
time of the corresponding XML node; node handle is
discussed in detail in Section 4.1.2.

• left-sibling and right-sibling are pointers to
the left the right siblings of the given XML node
respectively; these pointers are used for supporting
document order between siblings that correspond to
potentially different schema nodes.

• next-in-block and prev-in-block are pointers that
link nodes within a single block to allow reconstructing
document order among nodes corresponding to the
same schema node.

Since the size of a node descriptor is crucial for the overall
size of a database, a descriptor for an XML node contains
pointers not to all its child nodes, but only to the first ones
by descriptive schema. Let us illustrate this principle by
the library element in Figure 2. For the sample XML
document in that figure, the library element has two books
and one paper as child elements. On the other hand,
the schema node for element library has only 2 children.
Independently of the actual number of child books and
papers, the node descriptor for the library element has
exactly two child pointers: one to the first book element and
one to the first paper element. To traverse all the child book

elements of the library element, the database management
system uses the pointer to the first book element and then
follows the next-in-block pointers; interblock pointer are

used if child nodes take multiple blocks. Additionally to
saving up storage space, keeping only pointers to the first
children by schema allows making all node descriptors of
a given schema node be of fixed size. The latter is of
crucial importance for execution of updates, because fixed
size facilitates more efficient management of free space in
blocks.

Fixed size of a node descriptor for each schema node
requires specific handling for update operations that modify
descriptive schema of an XML document. For instance,
if an XML node is inserted that does not yet have
the corresponding schema node, then node descriptors
associated with the parent schema node should be expanded
by one child pointer. Since massive modification for all
these node descriptors is unacceptable, this modification is
implemented in the delayed per-block fashion. Precisely,
the size of node descriptors is kept the same within a
single block, but is relaxed to be potentially different across
different blocks associated with the same schema node. The
number of child pointers is stored in the header of each block
to convey information about the size of node descriptors
stored in the block.

To make the data organization well suited for XML
updates, our requirement was that each update over an
XML node involves modifying a constant number of fields
in the database. For illustration, let us consider an update
operation that moves a node. This operation is routinely
invoked by the procedure of splitting a block as the result
of inserting an XML node into an overfilled block. For
sustaining the physical parent-child consistency, the parent
property [6] has to be modified accordingly for each child
of the node to be moved. If a parent property was
implemented as a direct database pointer, then the latter
modification would have required the number of external
operations proportional to the number of child nodes,
which is computationally unacceptable. To avoid massive
modification in this case, a parent property is implemented
as an indirect pointer via the special indirection table. With
such design, modifying the parent property for all the child
nodes requires updating only a single pointer—the one
residing in the corresponding entry of the indirection table.

To summarize, the following features of the data
organization in Sedna are designed to facilitate execution
of XML update operations:

• Node descriptors have fixed size within a block;

• Node descriptors are partly ordered;

• The parent pointer of a node descriptor is indirect.

4.1.1 Numbering Scheme
A numbering scheme assigns a unique label to each node

in an XML document in accordance with some scheme-
specific rules. Labels encode information about relative
positions of nodes in an XML document. The main
purpose of a numbering scheme is to provide mechanisms
to quickly obtain structural relationship between a pair of
XML nodes. In Sedna design, a numbering scheme was
required to provide two such mechanisms: (1) checking
the ancestor-descendant relationship; (2) comparing XML
nodes by document order. The first mechanism allows
supporting query execution plans based on containment
joins as proposed in [15, 1]. The second mechanism is used
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for implementing XQuery operations based on document
order, e.g. node comparison, XPath expression, etc.

The main drawback of the previously existing numbering
schemes for XML (e.g., the one proposed in XISS [18]) is that
inserting nodes into an XML document periodically requires
reconstruction of labels for the entire XML document. We
have developed a novel numbering scheme that does not
require such reconstruction.

The idea of our numbering scheme is based on the
following observation: for any two strings S1 and S2 such
that S1 < S2 lexicographically, there exists a third string S
which is lexicographically in between the first two, i.e. the
inequality S1 < S < S2 holds. For example, for S1 = “abn”
and S2 = “ghn”, S can be chosen as S = “bcb”; for S1 = “ab”
and S2 = “ac”, S can be chosen as S = “abd”.

In our numbering scheme, the label of an XML node is a
pair (id, d) where ‘id’ is a string called a prefix, and d is a
character called a delimiter. Denoting string concatenation
by the plus sign, the string interval (id..id + d) specifies the
range of labels for all descendants of the given XML node.
Labels are assigned to nodes of an XML document to satisfy
the following conditions:

1. For any two XML nodes x and y labeled as (id1, d1)
and (id2, d2) respectively, the node x is an ancestor of
the node y if and only if id1 < id2 < id1 + d1.

2. In the same notation, the node x precedes the node y
in document order if and only if id1 < id2.

Note that a numbering scheme that provides support for
document order can also be used to implement the XQuery
notion of unique identity [3], because two nodes have equal
labels in such a numbering scheme if and only if they are
the same node.

4.1.2 Node Handle
Each XML node stored in Sedna is supplied with a node

handle that conforms to 3 requirements: (i) the node handle
uniquely identifies the XML node in the database; (ii) a
node handle provides quick access to the XML node; (iii) a
node handle is immutable for the whole lifetime of its
corresponding XML node, even if the latter is physically
moved within the database.

Node handles are required for effective implementation
of some database mechanisms and query and update
operations. For instance, hode handle is used to refer to
an XML node from index structures.

Node handlers cannot be implemented as straightforward
database pointers, since a physical address of an XML node
can change during the lifetime of the node. For example, an
XML node can change its physical location if its containing
block is split or merged with another block as a side effect
of update operations. Labels of the numbering scheme,
although immutable and identify XML nodes uniquely, are
not suitable as node handles as well, since retrieving an XML
node by its label requires an additional index upon labels.

With the above stated requirements, the node handle in
Sedna is implemented as an entry of the indirection table
that holds a pointer to that node. Actually indirection table
lays in the same blocks the nodes lay. While a node can
change its physical location, entries of the indirection table
are guaranteed to preserve their position during the lifetime
of the XML nodes they point to. A conceptual illustration
of a node handle is given in Figure 3.

Garbage collection of node handles is done on transaction
commit or database recovery, when orphaned blocks are
deleted.

4.2 Memory Management
As discussed in the previous subsection, representing

relationships between XML nodes with direct pointers is
one of the key design decisions in Sedna data organization.
Therefore, traversing between XML nodes during query
execution results in intensive pointer dereferencing.
For achieving high performance of the XML database
management system, it is thus of crucial importance to make
pointer dereferencing operation as quick one as possible.
Although conventional pointers provided by programming
languages and powered by a virtual memory management
mechanism of an operating system are generally effective
for performance reasons and the programming effort they
require, this solution is inadequate for an XML database
management system for the following reason: a database
management system cannot reasonably rely on the virtual
memory mechanism provided by an operating system for
executing queries over large amounts of data, because it is
beneficial to use query execution logic to control the page
replacement procedure (swapping) when forcing pages to
disk [4].

To handle the situation, we have implemented our
own memory management mechanism that supports 64-bit
address space and manages page replacement. We further
refer to the proposed address space as Sedna Address Space,
SAS for short. SAS is supported by mapping the address
space onto the virtual address space of a process (PVAS)
in order to use ordinary pointers for the mapped part. The
mapping is carried out as follows. SAS is divided into layers
of equal size. The size of layer has been chosen so that
the layer fits into PVAS. The layer consists of pages (that
are those in which XML data are stored as described in
Section 4.1). All pages are of equal size so that they can
be efficiently handled by the buffer manager. The header
of each page contains the layer number the page belongs
to. The 64-bit address of an object in SAS consists of the
layer number (the first 32 bits) and the address within the
layer (the remaining 32 bits). An address within a layer is
mapped to the address in PVAS on equality basis. In such
design no additional structures are required for providing
the mapping. The address range of PVAS (to which layers
of SAS are mapped) is in turn mapped onto main memory
by the Sedna buffer manager using memory management
facilities provided by an operating system.

The architecture of Sedna storage manager is shown in
Figure 4. We implemented our own 64-bit virtual address
space and memory management mechanism to support DAS.
The key idea of memory management in Sedna is integrating
persistence with virtual memory system. For achieving this
integration, we suggest dividing DAS into layers of equal size
that fits VAS. A layer consists of pages; pages store XML
data and also have equal sizes for uniform handling by the
Sedna buffer manager. The address of an object in DAS
consists of (1) the layer number and (2) the address within
the layer.

As shown in Figure 4, an address within the layer is
mapped to the address in VAS on the equality basis:
the address of an object in the VAS is the address of
the object within a layer. The address range of VAS is
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Client session

Database address space (DAS)
Virtual Address Space (VAS)

-

Bu↑er
manager

Bu↑er memory
VirtualLock (Windows)
mlock (Linux)

?

Data Base (Secondary Memory)?

MapViewOfFile (Windows)
mmap (Linux)

Figure 4: Sedna storage manager organization.

in turn mapped onto main memory by the Sedna buffer
manager using memory management facilities provided by
the operation system. The memory management strategy
is implemented uniformly for both Linux and Windows; the
corresponding system calls involved in buffer management
are shown in Figure 4. The address mapping suggested
allows dereferencing the pointer more effectively, as it
eliminates pointer swizzling overhead.

Dereferencing a pointer to an object in SAS (layer_num,

addr) is performed as follows. Address addr within a layer
is dereferenced to an object in PVAS as an ordinary pointer.
If there is no page in main memory by this address of PVAS,
then dereferencing results in a memory fault. In this case the
buffer manager reads the required page from disk. Otherwise
the system checks whether the page that is currently in main
memory belongs to the layer addressed by layer_num. If it
is not the case, then the buffer manager replaces the page
with the required one. It should be noted that the unit
of interaction with disk is not a layer but a page, so main
memory generally contains pages from multiple layers at a
time.

The main advantages of the memory management
mechanism used in Sedna are as follows:

• There is virtually no restriction on the database size,
as we provide a 64-bit virtual address space, that can
be emulated on a standard 32-bit architecture.

• Overhead for dereferencing a database pointer is
comparable to the one for conventional pointers, since
a database layer is mapped to PVAS addresses on
equality basis.

• Costly pointer swizzling is avoided by using the same
pointer representation in main and secondary memory.

5. QUERY EXECUTION
Query execution in Sedna is designed with two main goals

in mind:

1. Support for a wide range of queries/statements:
XQuery queries, XML update statements, data
definition language statements.

2. High performance for both query evaluation and
updates execution.

For maximizing the benefits of Sedna internal data
representation design, query optimization strategies are

worked out in correspondence with this representation.
For instance, since data organization in Sedna essentially
provides a naturally built index over structural component
of XML documents, it is only reasonable to utilize such an
index for optimizing query execution.

Query processing in Sedna is implemented as a sequence
of steps performed by the following components: (1) query
parser; (2) static analyser; (3) optimizing rewriter; and
(4) executor. Each of the components is discussed below.

The query parser takes a query or a statement submitted
by the user and produces the operation tree. The parser
in Sedna supports the following three types of queries
and statements: (i) XQuery queries; (ii) XML update
statements; and (iii) Data Definition Language statements
(e.g. the ‘create document’ statement). The operation tree
produced by the parser is designed to provide uniform
representation for all the 3 query/statement types, that
allows to use uniform techniques on subsequent steps for
all the types.

The static analyzer accepts the parsed query and is in
charge of performing the complete static analysis phase [3]
with conformance to the Formal semantics [5]. At this
stage, the static context of the query is initialized with
XQuery Functions and Operators and augmented with query
prolog declarations; the operation tree is expanded with
imported XQuery modules, and all namespace prefixes,
function names and variable names are resolved. If a query
contains any static errors [3], these are detected and reported
at this stage.

The optimizing rewriter and the executor deserve a more
detailed discussion and thus considered in the following two
subsections accordingly.

5.1 Optimizing rewriter
In Sedna, we have implemented a wide set of rule-based

query optimization techniques for XQuery. The cost-based
optimization is the subject of future work.

In this section the optimization techniques which are
implemented in Sedna are described. We researched several
other techniques for optimizing query execution through
rewriting, in particular, inlining for user-defined XQuery
functions [11] and predicate push down XML element
constructors [12].

5.1.1 Removing unnecessary ordering operations
The requirement for producing sequences of nodes in

document order with duplicate nodes removed is specified by
the XQuery semantics for many XQuery operations. Such
a Distinct-Document Order semantics is expressed in Sedna
query operation tree via explicit DDO operations. DDO
operations decrease query execution performance, because
they require the whole argument sequence to be evaluated
before a any result item could be produced and thus break
execution pipeline.

The idea for optimizing query execution with this respect
is to remove unnecessary ordering operations. A decision
on whether a given DDO operation in a query tree is
redundant is made by analyzing the query tree. Namely,
for each operation in the query operation tree, the following
properties for the resulting sequence are recursively found
out:

1. whether this sequence would already be in DDO;
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2. whether it would consist of no more than a single item;

3. whether it would consist of nodes on a common level
of an XML tree.

Using these properties, a DDO operation is removed if
(i) either its argument is known to be in DDO, or (ii) DDO is
not required for the resulting sequence. We researched these
ideas in [19]; similar ideas can be found in [13], although
different methods are used there.

5.1.2 Handling an abbreviated descendant-or-self
path step

The abbreviated path step “//” that is expanded
into descendant-or-self::node() is frequently used in
practical XQuery queries. However, straightforward
evaluation of this location step is extremely expensive. First,
this step has bad selectivity, since it generally selects almost
all nodes in an XML document. Second, it does not allow
to use benefits of the descriptive schema-driven storage
strategy employed in Sedna.

The idea for optimized evaluation of the abbreviated
descendant-or-self step is to combine it with the next
step in a location path: for example, expression //para

is transformed into /descendant::para. The rewritten
expression provides better intermediate selectivity and
benefits of the Sedna schema-driven storage.

However, it is not always semantically permissible to
combine the abbreviated descendant-or-self step with a next
step; a well-known counter-example from [3] shows that
“The path expression //para[1] does not mean the same
as the path expression /descendant::para[1]”. For the
above reason, predicate expressions of the next step of the
abbreviated descendant-or-self path step are analyzed. If the
predicate expressions do not depend on context position and
size (neither explicitly, nor implicitly), then the descendant-
or-self step is combined with its next step while preserving
the semantics of the original query.

5.1.3 Analyzing nested for-clauses
FLWOR-expressions in XQuery generally contain multiple

iteration variables in for-clauses. Binding sequences with
nested loop semantics An expression associated with an
inner iteration variable is analyzed, and the associated
expressions that do not depend on outer iteration variables
are marked as lazy. Lazy associated expressions are
evaluated just once, with the query semantics preserved.

5.1.4 Extracting structural location path fragments
We call a location path a structural one if it starts from

a document node and contains only descending axes and no
predicates. Many practical location paths contain structural
fragments. These are automatically mapped to Sedna access
operations over descriptive schema and can thus be executed
very quickly, since they are executed in main memory.

5.2 Executor
In this section we provide an overview of XQuery

execution over the storage system described above. We
consider general executor design and then describe a number
of optimization techniques which are specific to XQuery and
to Sedna storage system.

Like in most database systems, query execution pipe in
Sedna consists of a sequence of steps, among which are

parser, query rewriter, physical optimizer and execution
engine itself. The output of the physical optimization step
is a query execution plan that is a tree of the physical
operations. Each one is implemented as iterator and
provides extended version of the well known “open-next-
close” interface [10]. Design based on the standard interface
allows easy addition of new physical operations.

Calling ‘open’ for the top-most operation results in its
initialization (e.g. resources allocation, variable bindings)
and in ‘open’ calls for all children. In this way the whole
tree-structured query plan is initiated. Query is evaluated
in a demand-driven fashion avoiding unnecessary data
materialization. The method ‘next’ is called repeatedly for
the top-most operation until the end-of-sequence indicator
has been received. Finally, the ‘close’ call recursively releases
resources.

At the present time, Sedna provides library of the physical
operations which covers XQuery expressions and provides
support for updates and data definition language. The
statement of XUpdate-based language [17] is represented as
an execution plan which consists of two parts. The first
part selects nodes that are target for the update, and the
second part updates the selected nodes. The selected nodes
as well as intermediate result of any query expression are
represented by direct pointers. Since direct node pointers
are essentially invalidated after a number of move operations
are performed, the updated nodes are referred to by node
handles.

In the following subsections, we emphasize several aspects
of query processing that are specific to our executor:
treatment for XML element constructors and evaluation of
XPath location paths.

5.2.1 Element constructors
Besides the well-known heavy operations like joins, sorting

and grouping, XQuery has a specific resource-consuming
operation: XML element constructor. The construction of
an XML element requires making a deep copy of its content
that leads to essential computational and storage overhead.
The overhead grow significantly for a query consisting of a
number of nested element constructors.

Realizing the importance of the problem, we proposed
constructor optimization strategies [22].

The first optimization strategy is called embedded element
constructors. In case of two element constructors nested into
one another within a query, the nested one sets the parent
property of the constructed node to the element, created by
the constructor it is nested to (when it is possible).

Another optimization proposal is virtual element construc-
tor. It also does not perform deep copy of the content of
constructed node, but rather stores a pointer to it. It is
possible when the result of constructor is handled by oper-
ations, that do not traverse the constructed element’s sub-
tree, and do not depend on node identity or document order
properties of constructed nodes.

Our recent research [12] allows us to claim that for a wide
class of XQuery queries there will be no deep copies at all.
Most XQuery queries can be rewritten in such a way that
above the element constructors in the execution plan there
will be no operations that analyze the content of elements.

6. TRANSACTION ASPECTS
Each statement is executed within a transaction.
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Transaction can contain several statements and provides
ACID support during execution. In this section we discuss
Sedna transactions issues.

6.1 Using versions for data
One of the widely used techniques for concurrency

control management is multiversioning. When using
multiversioning, each data element may have several
versions. Sedna uses snapshot-based scheme with data
elements being pages [26]. Snapshot is a set of versions
(one version per page) that is transaction-consistent.
Logically snapshot is just a pair: (timestamp, list of
active transactions). Thus, from the technical point of
view, snapshot maintenance does not create much overhead.
To create a new snapshot, we simply store the current
timestamp and the list of currently active transactions.
Snapshot-based versioning allows us not to worry about
garbage collecting. Old versions are purged when they are
not needed anymore, i.e. when they do not belong to any
of the snapshots. This condition is checked when a new
version of a page is created, so the procedure is not very
time-consuming.

When transaction updates some page, a new version
of this page is created. Locking scheme prevents two
concurrent transactions from creating uncommitted versions
of the same page. When transaction commits, all its versions
become last committed ones. If it is rolled back, all its
versions are simply discarded. When reading, transaction
fetches last committed versions (or reads its own versions if
it has created them). Versioning mechanism is transparent
from user and transactional point of view, since it is
encapsulated in the storage manager.

6.2 Locking scheme
Sedna uses the classical strict two-phase locking approach

(S2PL) [2] to support the isolation property of transactions.
This approach allows multiple users access data without
paying attention to concurrency mechanism details. At the
present moment, locking granularity is an XML document.
In many cases, locking the whole XML document is excessive
and leads to a decrease in concurrency. For this reason, we
are working on a finer-granularity locking scheme.

6.3 Read-only transactions
Multiversioning allows using read-only transactions (also

called queries). These transactions cannot contain update
statements, but they can be executed much faster due to
multiversioning. Each query reads one of the snapshots,
so it obtains a consistent but possibly a slightly obsolete
state of the database. At the same time, reading a snapshot
allows non-blocking processing (i.e. non-S2PL) for read-only
transactions. Snapshots are periodically advanced to include
recent updates made to the database. Since a snapshot is a
simple structure, advancement takes small amount of time.

6.4 Recovery
Durability property of transactions is guaranteed by

logging and recovery mechanisms [21]. These mechanisms
allow us to recover database from any kind of soft crash.
All the main operations (insert node, create index, etc.) are
logged using the WAL protocol. Additionally, a checkpoint
may be created at some moment during execution to fixate
transaction-consistent state of a database. We call such a

state a persistent snapshot. If a database is crashed at some
moment in time, two-step recovery process is initiated to
restore all transactions that had been committed by the
moment of the crash. During the first step, transaction-
consistent state of the database is restored by converting
versions belonging to the persistent snapshot into last
committed ones. Then, at the second step, log is processed
to redo the necessary operations of committed transactions.

6.5 Hot-backup
Sedna allows creating hot-backup copies of a database.

Such backup can be made even while the database is
working and performing user requests. Incremental hot-
backups are also supported to provide more efficient backup
of rarely updated databases. From technical point of view,
all necessary files are copied at a specified destination
during hot-backup. First, data file is copied. To solve
the infamous “split-block” problem, additional logging is
used. Second, log is fixated and its files are copied. After
that, any additional files (e.g. configuration ones) are backed
up. During incremental hot-backup, only log files and
configuration files are copied, so incremental hot-backup
reduces backup time if the number of updates is relatively
small. Using incremental hot-backups, it is also possible
to perform some analogue of “point-in-time” recovery by
applying only the required incremental parts of the required
backup.

7. CONCLUSION
In this paper we have presented an overview of the Sedna

XML DBMS focusing on its physical layer. Sedna is freely
available at our web site2 and the readers are encouraged to
try it out.
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